
Quaternion-based Extended Kalman Filter for

IMU tutorial

Dang Lam Tung
danglamtung199@gmail.com

Faculty of Electrical and Electronic Engineering
Ho Chi Minh University of Technology

September 27, 2019

Contents

1 Introduction 2

2 The Kalman Filter 2
2.1 Noise and filter . 2
2.2 Least squared estimation . 3
2.3 Discrete-time systems update . 6
2.4 Discrete-time Kalman Filter . 7
2.5 Properties of Kalman Filter . 9
2.6 Divergence issues . 10

3 Quaternion Based Extended Kalman Filter for estimating ori-
entation. 10
3.1 The Discrete-time Extended Kalman Filter 10
3.2 The quaternion Extended Kalman Filter for IMU 12

A Appendix A 16

B Appendix B 19
B.1 Gyroscope and its properties: . 19
B.2 Accelerometer: . 20
B.3 Magnetometer: . 21
B.4 Earth magnetic field . 21

1

1 Introduction

This is tutorial about the origin, theory and designing of Kalman Filter and
Extended Kalman Filter, a useful tool for filtering and sensor fusion . In this
tutorial we will cover the origins of Kalman Filter from linear systems origin,
(the Bayes origin will be cover in later version). Then we will investigate how
to design an extended Kalman Filter from an example for quarternion for IMU
fusion problem. The writer not expected this document is a complete guide
to Kalman Filter, but a useful note for everyone who want to implement an
Extended Kalman Filter. I want to thank for the PIF club, the Student Research
Club of Faculty of Electrical and Electronic Engineering of HCM University of
Technology to give me the passion to complete this document. If there is any
error, please feel free to correct me.

2 The Kalman Filter

2.1 Noise and filter

Imagine you have an sensor, any type maybe an heart rate sensor, and tem-
perature sensor or even an expensive GPS tracker, no matter how advanced or
costly they are, they will always be suffered from noise, may be from sensor
itself or the environment. In fact, the more sensitive is the sensor, the more
noise it gets. So in reality we always need filter to correct the noisy data. There
are a lot of filter types for many type of noise. but base on probability there
are 2 type of noise: white Gaussian noise and colored noise.

Fig 1: The white Gaussian noise

White Gaussian noise is non correlated to the distribution of the signal, zero
mean and its distribution is Gaussian. WGN (white Gaussian noise) has a lot of
sources and this is the most common noise source. It has that is because of the
central probability theorem, if a distribution is prolong enough, it is considered
the Gaussian distribution.

Colored noise is correlated with the signal, and its distribution may not be
the Gaussian, to filter this kind of noise, we need special designed filter.

In term of frequency, we have high frequency noise and low frequency noise.
An example of high frequency noise is the noise of the accelerometer in the

2

IMU system we will concern later, the low frequency noise is the noise of the
gyroscope in the IMU system, it come from incremental effect of gyroscope,
not from the sensor itself. To deal with noise, we have to use the filters like
low-pass filter, high-pass filter, band-pass filter,...etc but in many application
only one sensor is not enough cause the properties of each sensor is different, we
can conduct the ”sensor fusion” to get a better estimation, that is the point of
complemetary filter and kalman filter is also be a very good (and popular) tool
for the sensor fusion problem. So we will trace the creation of Kalman filter
from its root: linear system and estimation.

2.2 Least squared estimation

The following theory of Kalman Filter and Extended Kalman Filter is based on
[1]

Imagine there is a constant you want to measure, maybe height of a drone,
the temperature of your house,... etc, we will call that constant is x. To measure
an constant x, we will use some sort of sensors to measure x, and the result of
that measurement is y, in this section we will consider the measurement of sen-
sors is a linear combination of x and the measurement constraint H1, H2, ...Hk,
and a noise of measurement is v So y = H1x+H2x+ ...+Hkx+ v

Generally, we can consider x is a constant state vector instead of a single
constant, denote x = [x0, x1, ..., xn], and the k-element measurement vector is
y = [y0, y1, ...yk] (k, n > 0) (in this case we consider there is no noise in the
measurement), the measurement equation is

y0 = H11x0 +H12x1 + ...+H1nxn + v0

y1 = H21x+H22x1 + ...+H2nxn + v1

....

yk = Hk1x+Hk2x1 + ...+Hknxn + vk

This combination can be write by this matrix form:

y = Hx (1)

In which H is the observation matrix, has the dimension of (k, n).

H =


H11 H12 H13 ...H1n

H21 H22 H23 ...H2n

.
Hk1 Hk2 .. Hkn


So base on measurement vector and the observation matrix H, we could

estimate the state vector x, we will call the estimated vector by (1) is x̂, we will
have:

y = Hx̂

We define the different between the measurement and the Hx̂:

ey = y −Hx̂

3

The most probable value of x is the vector x̂ that minimizes the sum of squared
between of the observed value y and the vector Hx̂. So we will try to compute
the x̂ that minimizes the cost function L, where L is given as

L = e2
y1 + e2

y2 + . . . + e2
yk

= eTy ey

L = eTy ey = (y −Hx̂)(y −Hx̂)T = yT y − x̂THT y − yTHx̂+ x̂THTHx̂

To minimize the cost function L respect to x̂, we compute its partial derivative
and set it equal to zero:

∂L

∂x̂
= −yTH − yTh+ 2x̂THTH = 0

Solving this equation for x̂ results in

HT y = HTHx̂

x̂ = (HTH)−1HT y

This can be the minimum of L or some other type of stationary point of L, we
need to prove this is the minimum by computing the second derivative of L.

But in recently case, the noise v is not considered, in real world there is
nothing such as a non noisy system, the noise can come from many source, may
be a bad sensor or a sleepy student forget something,... etc but each piece of
information is precious, no matter how noisy it is, so in this section we will find
a way to use that noisy information. We will assume that x is a constant vector,
y is a k-element noisy measurement vector and has a linear combination with
x, and the noise vector v has k-element is v = [v0, v1, ..., vk]

We will assume that v has zero mean and independent Gaussian distribution,
the covariance matrix is

R = E(vvT) =


σ2

1 0 0 ...0
0 σ2

2 0 ...0
0 0
0 σ2

k


Our goal is to minimize the loss function

L = e2
1/σ

2
1 + e2

2/σ
2
2 + . . . + e2

n/σ
2
n (2)

But why? Let consider the i measurement which has the covariance of noise is
σi, we can see that the larger the σi is the more unreliable the i measurement
is, so the loss function of this measurement is smaller, mean wah, we don’t
even need to minimize this measurement anymore cause it is bad anyway and
vice versa, if the measurement is not very noisy then its information can be
trustworthy.

4

The matrix form of the loss function is

L = eTR−1e

= (y −Hx̂)TR−1(y −Hx̂)

= yTR−1y − x̂THTR−1y − ytR−1Hx′ + x̂THTR−1Hx̂

To find the best x̂ possible, we compute the derivative of L by x̂

∂L

∂x̂
= −2yTR−1H + 2x̂THTR−1H = 0 (3)

→ x̂ = (HTR−1H)−1HTR−1y

So this this how we find the best estimation x̂ for the given system, but in
reality, to compute x̂ this way, we has to recompute the equation (3) each time,
and that is not very memory and time efficiency, so we has to find a way to
recursively computing the x̂:

yk = Hkx+ vk

x̂k = x̂k−1 +Kk(yk −Hx̂k−1)

In which k is the iteration step, Kk is called the estimator gain matrix.
So the estimation error’s mean is

E(ex, k) = E(x–x̂k)

= E(x− x̂k−1 −Kk(yk −Hkx̂k−1)

= E(ex,k−1 −Kk(Hkx+ vk −Hkx
′k − 1))

= E(ex,k−1 −KkHk(x− x̂k−1) +Kkvk)

= (I–KkHk)E(ex,k−1) +KkE(vk)

Our loss function in this case is

Jk = E((x1 − x̂1)2) + E((x2 − x̂2)2) + . . . + E((xk − x̂k)2)

= E[(ex1,k)2 ++ (exn,k)2]

= E[eTx,kex,k]

= E(Tr(ex,k, e
T
x,k))

The transition of Pk through time steps is

Pk = E[(I −KkHk)ex,k−1–Kkvk)(I −KkHk)ex,k−1–Kkvk)T] (4)

Pk = (I–KkHk)E(ex,k−1e
T
x,k−1)(I–KkHk)T

−KkE(vke
T
x,k−1)(I −KkHk)T

− (I–KkHk)E(ex,k−1v
T)KT

k

+Kk(vkv
T
k)KT

k

5

Because the probability independence of two covariance, we have:

E(ex,k−1v
T
k) = 0

So Pk update equation is actually

Pk = (I–KkHk)Pk−1(I–Kk ∗Hk)T +Kk ∗Rk ∗KT
k (5)

This is how we can calculate the Pk recursively, and Pk is the covariance
matrix of the state x̂, all of its values must be positive. Now we have to find the
value of Kk based on Pk to make the loss function small as possible (to know
why please read the appendix A)

<=>
∂Jk
∂Kk

= 2(I–KkHk)Pk−1(−HT
k) + 2KkRk = 0

<=> KkRk = (I −KkHk)Pk−1H
T
k

<=> Kk(Rk +HkPk−1H
T
k) = Pk−1H

T
k Kk = Pk−1H

T
k (Rk +HkPk−1H

T
k)−1

To summary the full algorithm will be:
1. Initialize the estimator when k = 0:

x0 = E(x0)

P0 = E[(x0–x̂0)(x− x̂0)T]

2. k > 0 we have:

yk = Hkx+ vk

vk is zero-mean random vector with covariance Rk (WGN)
Update equation is:

Kk = Pk−1H
T
k (Rk +HkPk−1H

T
k)−1

Pk = (I–KkHk)Pk−1(I–KkHk)T +KkRkK
T
k

x̂k = ˆxk−1 +Kk(yk −Hkxk−1)

So, this is the least squared estimator.

2.3 Discrete-time systems update

Suppose we have a Discrete-time system:

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

Where uk is the input and wk is the zero-mean white Gaussian noise with
covariance of Qk. We will find out how xk state change with time We call x̄k is

6

the expected value of xk then because the system is linear, we can compute the
barxk through time like this (we don’t consider the noise factor here):

x̄k = Fk−1x̄k−1 +Gk−1uk−1

The covariance of xk though time is

(xk–x̄k)(xk–x̄k)T = (Fk−1xk−1 +Guk−1 + wk−1 − x̄k)(..)T

= [Fk−1(xk−1 − ¯xk−1) + wk−1][...]T

= Fk−1(xk−1 − x̄k−1)(xk−1 − x̄k−1)TFT
k−1 + wk−1w

T
k−1 + ...

The rest are not show because (x− x̄) and wk−1 are probability independent so
when compute the covariance matrix Pk they are equals to zero:

=> Pk = E[(xk–x̄k)(xk–x̄k)T] = Fk−1Pk−1F
T
k−1 +Qk−1

This is called the Lyapunov equation.

2.4 Discrete-time Kalman Filter

Kalman Filter is the combination of the least squared estimation and a (non)
linear model of the system, the effect of this combo is that when an unexpected
accident happen to measurement method, the model will “correct” the error
happened and vice versa.

To prove the Kalman filter, suppose we have a linear discrete system as:

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

The noise wk−1, vk is white gaussian, non-correlated and has covariance:

wk = (0, Qk)

vk = (0, Rk)

Qk = E(wkw
T
k) =

Q1 ... 0
. . .
0 ... Qn


Rk = E(vkv

T
k) =

R1 ... 0
. . .
0 ... Rn


We denote the x+

k is the posteriori state estimation, the estimation of xk
base on the linear model of the system up to time k (include time k):

x+
k = E[xk/y1, y2, ...yk]

7

If we have all of the measurement before the time k, then we can form a priori
estimation state

x−k = E[xk/y1, y2, ...yk−1]

Summary: x−k = estimation of xk before we process the measurement at time k
x+
k = estimation of xk a after we process the measurement at time k To smooth

our measurement or predict , we can use a prediction and combine it with our
measurement state estimation:

xk/k+N = E[xk/y1, y2, ...yk+n]

xk/k−N = E[xk/y1, y2, ...yk−n]

We use the term Pk to denote the covariance of the estimation error, P−k denote
the covariance of the estimation error of x−k and P+

k denote the covariance of
x+
k :

P−k = E[(xk–x̂k
−)(xk − x̂k−)T]

P+
k = E[(xk–x̂k

+)(xk − x̂k+)T]

Fig 2 :The relationship of priori and posteriori can be seen in this image.
This is a picture from the Optimal State Estimation book, Dan Simon
So, we begin with x0, we initial the value of the filter like this

x+
0 = E(x0)

This is make sense because we want to initial the x0 the starting value of the
system. Next we want to find the time update equation of P, the covariance
of x0. If we know the starting state perfectly, P+

0 = 0, if we have absolutely
no idea about the value of x0 then P+

0 = ∞I. In general, P0 represents the
uncertainty in our initial estimation of x0.

P+
0 = E[(x0–x̂0

+)(x0 − x̂0
+)T]

Then based on our discrete-time linear system model we have:

x−k = Fk−1x
+
k−1 +Gk−1uk−1

P−k = Fk−1Pk−1 + FT
k−1 +Qk−1

8

This is called the update equation for x̂ and P . From the time (k − 1)+ to k−

we don’t have any state estimation for x̂ so we have to update the state estimate
based on our knowledge of the system dynamics in the linear model form.

From the time k− to k+, we conduct the estimation state with the least
squared estimation which take the new measurement yk in to account:

Kk = P−k−1H
T
k (HkPk−1H

T
k +Rk)−1

x+
k = x̂k

− +Kk(yk −Hkx̂
−
k)

P+
k = (I–KkHk)P−k (I −KkHk)T +KkRkK

T
k

And that end the update cycle of the predict - measurement or we can call the
prediction - correction system:

To summarized the Discrete-time Kalman Filter: 1. The dynamic system is
given by the following equations:

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

E(wkw
T
j) = Qkδk−j

E(vkv
T
j) = Rkδk−j

E(wkv
T
j) = 0

2. The Kalman Filter is initialized as follows:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0)(x0 − x̂+
0)T]

3. The Kalman Filter is given by the following equations, which are computed
for each time step k = 1,2,...:

The prediction update:

x−k = Fk−1x
+
k−1 +Gk−1uk−1

P−k = Fk−1Pk−1 + FT
k−1 +Qk−1

The measurement update:

Kk = P−k−1H
T
k (HkPk−1H

T
k +Rk)−1

x+
k = x̂k

− +Kk(yk −Hkx̂
−
k)

P+
k = (I–KkHk)P−k (I −KkHk)T +KkRkK

T
k

2.5 Properties of Kalman Filter

+ P will converge through time and P is the way to evaluate the “correctness”
of the measurement + Kalman filter is the best linear filter because it has the
combination of the model and the measurements. There maybe a better non

9

Fig 3: The converge of P

linear filter but Kalman filter is the best linear filter even if the noise is not
Gaussian.

+ For non linear systems, there are approximate solution like Taylor expan-
sion.

+ In fact the Kalman Filter can be derived as a filter that whiten the mea-
surements and extract the maximum information possible.

2.6 Divergence issues

If your Kalman filter does not work, try:
+ Recheck the model F, Q, H and R, the model is important for the converge

of the P, if P does not converge :3 try recompute the Q and R. Note that the
filter consider Q and R is white, zero-mean and completely uncorrelated, if some
of that condition does not meet, the filter won’t work.(actually there is a kind
of Kalman Filter can handle this situation, but not our interest).

+ Kalman filter can suffer from the arithmetic precision.
+ Initialize P properly, P is too large or too small can lead to unstable in

the state estimation.

3 Quaternion Based Extended Kalman Filter for
estimating orientation.

3.1 The Discrete-time Extended Kalman Filter

In reality, there is no thing such as a ”linear system”, all system are non linear,
but we can use the Kalman Filter to estimate these non-linear system by using
the Taylor Expansion to linearize the equation. Suppose we have the non-linear
system like this:

xk = fk(xk−a, uk−1, wk−1) (6)

yk = hk(xk, vk) (7)

w (0, Qk) (8)

v (0, Rk) (9)

10

We perform the first order Taylor expandsion for the state equation around
xk−1 = x̂+

k−1 and wk−1 = 0 to obtain:

xk = fk(x+
k−1, uk−1, 0) +

∂fk−1

∂x
|x̂+

k−1
(xk−1 − x̂+

k−1) +
∂fk−1

∂w
|x̂+

k−1
(wk−1 − 0)

Denote ∂fk−1

∂x |x̂+
k−1

= Fk−1, ∂fk−1

∂w |x̂+
k−1

= Lk−1:

xk = fk − 1(x+
k−1, uk−1, 0) + Fk−1(xk−1 − x+

k−1) + Lk−1wk−1

= Fk−1xk−1 + [fk−1(x̂+
k−1, uk−1, 0)− Fk−1x̂

+
k−1] + Lk−1wk−1

= Fk−1xk−1 + ūk−1 + w̄k−1

In which ūk−1 = [fk−1(x̂+
k−1, uk−1, 0)−Fk−1x̂

+
k−1], w̄k−1 = Lk−1wk−1 The signal

ūk and the noise signal uk are defined as:

ūk = fk(x̂k
+, uk, 0)− Fkx̂k

+

w̄k ∼ (0, LkQkL
T
k)

Which measurement equation, we use the first order Taylor expansion around
xk = x̂−k and vk = 0 to obtain:

yk = h(x̂−k , 0) +
∂hk
∂x
|x̂−k (xk − x̂−k) +

∂hk
∂x

(vk − 0)

= hk(x̂−k , 0) +Hk(xk − x̂−k) +Mkvk

= Hkxk + [hk(x̂−k , 0)−Hkx̂
−
k] +Mkvk

Just like the state equation, we define zk = [hk(x̂−k , 0)−Hkx̂
−
k]

= Hkxk + zk + v̄k

zk and v̄k is defined as:

zk = hk(x̂k
−, 0)−Hkx̂k

−

v̄k ∼ (0,MkRkM
T
k)

So the Discrete-time Extended Kalman Filter can be summarized as: 1. The
dynamic system is given by the following equations:

xk = fk(xk, uk, k) + wk

yk = hk(xk, k) + vk

wk ∼ (0, Qk)

vk ∼ (0, Rk)

2. The Kalman Filter is initialized as follows:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0)(x0 − x̂+
0)T]

11

3. The Kalman Filter is given by the following equations, which are computed
for each time step k = 1,2,...: a) Compute the partial derivative matrices of the
state equation:

Fk−1 =
∂fk−1

∂x
|x̂+

k−1

Lk−1 =
∂fk−1

∂w
|x̂+

k−1

b) Perform the time update of the state estimate and estimation error covari-
ance:

x−k = fk(x+
k−1, uk−1, 0)

P−k = Fk−1Pk−1 + FT
k−1 + Lk−1Qk−1L

T
k−1

c) Compute the partial derivative matrices of the measurement equation:

Mk =
∂hk
∂x
|x̂+

k−1

Lk−1 =
∂hk
∂w
|x̂+

k−1

d)Perform the measurement update of the state estimate and state measurement
covariance as follows:

Kk = P−k−1H
T
k (HkPk−1H

T
k +MkRkM

T
k)−1

x+
k = x̂k

− +Kk(yk − hk(x̂−k , 0))

P+
k = (I–KkHk)Pk

And that is our Extended Kalman Filter.
So, in reality, we have:

3.2 The quaternion Extended Kalman Filter for IMU

The EKF model in thos section is based on the [2].
The IMU or the inertial measurement unit is a combination of sensor which

give us the information of the object’s orientation in 3D space, an IMU system
consist of (a) gyroscopes, (an) accelerometers and maybe (a) magnetometer.
The fusion data of these sensor give us the orientation or even better, which
high-end sensors, we can even measure the accelerate and integral it to achieve
the reference location of an object (the inertial navigation system), which often
go with an GPS system. IMU is a must-have in many application, like SLAM,
self driving car, drone,.... and Extended Kalman Filter is the best way for fusing
IMU sensors. That why we will use this problem for an example for Extended
Kalman Filter.

The state vector is the combination of quaternion (if you don’t know what
is quaternion, see appendix A) q and gyroscope bias bω (if you don’t know what
is gyroscope bias, please look at appendix B), total is 7 elements (and if you

12

think 7 is many, remember that in Ardupilot, their EKF has a 22 variable state
vector).

x = [q, bω] (10)

From kinematic equation, we have

φ = φ+ (ω − bω)dt (11)

We know that:
dq

dt
= 1/2qω (12)

From the definition of gradient, we have

q′ = (qk − qk−1)/dt =
1

2
qk−1ω

=> qk = (I +
1

2
ω∆t)qk−1

We know from previous section that the quaternion multipication can be repre-
sent by a matrix multipication, we denote as

1

2
qω =

1

2
S(q)q =

1

2
S(ω)ω (13)

Which

S(q) =


−b −c −d
a −d c
d a −b
−c −b a


Then we can create the state transition matrix:

A =

(
I4x4 −0.5 ∗ S(q) ∗ dt
03x3 I3x3

)

B =

(
0.5 ∗ Sq ∗ dt

03x3

)
ωk = [Gxk, Gyk, Gzk]

If this seen magical to you, just write down the equation and you will see the
magic.

Model equation:

xk = Akx
+
k−1 +Bkωk

P−k = AkPk−1 +AT
k +Qk

For the measurement route: We have the rotation matrix with quaternion:

R(q) =

a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2


13

aik = Ca(qk) + ba + ea

With the aik is the inner frame accelerate of the sensor.
Ca(qk) is the quaternion rotation matrix at time k multiplied with the reference
accelerate of the gravity.
ba is the bias of the accelerometer.
ea is the noise of the accelerometer.
For accelerometer, we have the gravitation force downward vector is [0 0 1]
(consider the range of accelerometer is [0:1], this can be [0 0 g] based on the
range of the accelerometer)

Ca(qk)g = −

 2(bd–ac)
2(cd+ ab)

a2 − b2 − c2 + d2


To linearlize this Equation, we use the Taylor expansion:

f(x)|x−a = f(a) + f ′(x)(x− a) +
f
′′
(x)

2
(x− a)2 + ...+

fn(x)(x− a)n

n!

Using the Taylor expansion for Ca(qk) we achieve:

Ca(qk)|qk=qk−1
= Ca(qk−1) + Ca(qk)′(qk − qk−1) + ...

Ca(qk)′ =
∂Ca(qk)

∂qk
=

∂Ca1

∂a
∂Ca1

∂b
∂Ca1

∂c
∂Ca1

∂d
∂Ca2

∂a
∂Ca2

∂b
∂Ca2

∂c
∂Ca2

∂d
∂Ca3

∂a
∂Ca3

∂b
∂Ca3

∂c
∂Ca3

∂


This is called the Jacobian matrix of Ca, with the help of Matlab, the result is:

∂Ca(qk)

∂qk
= −2

 2c 2d 2a 2b
−2b −2a 2d 2c
2a −2b −2c 2d


The way to calculate the Jacobian matrix is using the jacobian function of
matlab:

Fig 4: Computing the jacobian

14

So the measurement model is:axay
az


k

= (

 2(bd–ac)
2(cd+ ab)

a2 − b2 − c2 + d2


k

+

 2c 2d 2a 2b
−2b −2a 2d 2c
2a −2b −2c 2d


k

)(


a
b
c
d


k

−


a
b
c
d


k−1

)

We give y =

axay
az


k

, C ′ak
=

 2c 2d 2a 2b
−2b −2a 2d 2c
2a −2b −2c 2d


k

and the rest of equation

is considered the zk and vk, and we can sum up two matrices into Rk (this is
the Extended Kalman Filter properties)

For magnetometer, we have the north magnetic field northward is [0 1 0]
(note that this is not the true representation of the magnetic field, you can see
appendix B for a proper explanation, the [010] vector is chosen for the sake of
simplicity). We also have to normalize the magnetic field by mnorm = m/||m||

The measurement magnetometer model is processed like the accelerometer,
but note that the data from magnetometer must be calibration like in appendix
B to get the correct result The measurement equation is:

mi
k = Rk(qk)m+ ba + ea

With the aik is the inner frame accelerate of the sensor.
Cm(qk) is the quaternion rotation matrix at time k multiplied with the reference
magneto vector.
ba is the bias of the magnetometer.
ea is the noise of the magnetometer.
mi

k is the inertial magneto of the sensor.
Process the equation like the accelerometer, we achieve the measurement

matrix:

Cmk
=

 2(bc+ ad)
a2 − b2 + c2 − d2

(cd− ab)

 The Jacobian matrix of Cmk
is:

C ′mk
=

−2d 2c 2b −2a
2a −2b 2c −2d
2b 2a 2d 2c


So the measurement equation is: Hk =

(
C ′ak

03x3

C ′mk
03x3

)
The rest of the EKF is

follow the EKF equation:

Kk = P−k H
T
k (HkPk −HT

k +Rk)−1

xk = xk−1 + +Kk(yk–Hkx
+
k−1)

Pk+ = (I–KkHk)P−k (I–KkHk)T +KkRkK
T
k

The value of Rk and Qk is chosen by getting the stationary value and covari-
ance, the need of using zk in the original Extended Kalman Filter equation is

15

not important. Design an Extended Kalman Filter is mostly designing its state
equations and especially the covariance matrix Rk and Qk is very important for
the filter to converge, so sensor calibration is important part of the work, this is
explained in the appendix B. The rest of the work now is mostly applying the
proven EKF equation. Plotting the value of P matrix is the most helpful tool
to make sure the filter work. In the Ardupilot EKF, a complementary filter is
used to check as if the EKF is fail.

Fig 5: The result of the EKF with a real life data

We can see that the yaw and pitch estimation is wrong, but this can be fix
because the estimation error is linear :3 this come from the wrongly magneto
value has been chosen, but overall the filter work quiet good with difference
about 1.5 - 2 degrees.

A Appendix A

Quaternion is inverted by Hamilton, it is the way to represent 3D orientation
by using complex number. We all know about the famous equation: ij = jk
= ki = -1, this denote the cross product, a useful tool to compute volume of
a object, quaternion is actually an expansion from the cross product idea. [3]
We call q = a + bi + cj + dk is a quaternion, a,b,c,d is scalar numbers, i,j,k is
complex numbers represent 3 axis of the 3D coordinates system

This quaternion can be discribe as q = A+ j ∗B

16

Give quaternion p and q like this:

q = a+ bi+ cj + dk

p = a′ + b′i+ c′j + d′k

1. Quaternion adding:

p+ q = (a+ a′) + (b+ b′)i+ (c+ c′)j + (d+ d′)k

2. Quaternion multiphy

p ∗ q = (a+ bi+ cj + dk) ∗ (a′ + b′i+ c′j + d′k)

Remember ij = jk = ki = −1, we have the result:

p ∗ q = aa′ − bb′ − cc′ − dd′ + (ab′ + ba′ + cd′ − dc′)i
+(ac′ − bd′ + ca′ + db′)j

+(ad′ + bc′ − cb′ + da′)k

We consider the quaternion a 4x1 vector then we can split the result to get the
multiphy matrix like is:

Hk =

(
C ′ak

03x3

C ′mk
03x3

)
3. Norm of the quaternion:

||q|| =
√

(a2 + b2 + c2 + d2)

4.Quaternion unit: Quaternion unit is the quaternion which has norm equal
1, unit quaternion represent the 3D coordinates system:

||q|| =
√

(a2 + b2 + c2 + d2) = 1

5. Inverse of a quaternion Give q = a+ bi+ cj + dk

q−1q = 1

q−1 = (a− bi− cj − dk)/||q||2

6. 3D rotation which quaternion: To represent an 3D orientation which qua-
terion, the best way to do so is using an unit quaternion, which is a quaternion
which norm = 1 when we talk about rotation, always remember that we are
talking about unit quaternion and the Kalman Filter on this tutorial has to
perform normalization to return a uint quaternion.

To rotate a quaternion p with an quaternion q, we have:

prot = q ∗ p ∗ q−1

[4] Proof of this equation will come in the next version of this document, or you
can read more [5]. The simple explain is that the quaternion multiplication is

17

actually a rotation from 3D space into the 4D, and the multiplication with the
inverse of that quaternion will rotate the quaternion again, from the 4D space
to the 3D space.

6. Rotation model: Give a quaternion q, angular velocity ω, the rotation
equation is:

dq

dt
= −1

2
∗ q ∗ ω ∗ dt

Solve this derivative equation:

q(t) = e−
1
2ω∆t ∗ q0

Using Taylor Expansion we have:

q = q +
q∆tω

2
+
q∆t2ω

8
+ ...

Normally, we only need first or second order Taylor Expansion quaternion mul-
tiplication.

7.Quaternion rotation matrix: We already known that the 3D rotation with
quaternion has the equation prot = qpq−1 Then convert this operation into the
matrix form as p = R(q)p we have the quaternion matrix rotation:

R(q) =

a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2


8.Conversion from quaternion to euler angle: When compare the quaternion

rotation matrix with the euler rotation matrix, we have the quaternion to euler
angle conversion[6]:φθ

ψ

 =

atan2(2(ab+ cd), 1− 2(b2 + c2))
asin(2(ac− db))

atan2(2(ad+ bc), 1− 2(c2 + d2))


The quaternion rotation group is actually the SU(2), mean the quaternion

rotation double cover the SO(3) rotation group[7], which prevent Gimbal Lock
happen and make the rotation return to start point when complete a circle
rotation. The advantaged of quaternion is also in the computing performance
of rotation:

Performance comparison of rotation chaining operations
Method Multiplies Add/subtracts Total operations
Rotation matrices 27 18 45
Quaternions 16 12 28

*Remember that the Gimbal Lock proof of quaternion is because of the
SU(2) rotation group, if you decide to convert quaternion to Euler angle – for
a readable output, the gimbal lock effect will come back.

18

B Appendix B

B.1 Gyroscope and its properties:

Gyroscope is a device that will retain its orientation no matter how the outer
coordinate change. This ability come from the Coriolis force of the heavy/ */
make it retain the orientation, based on the inner orientation, we can calculate
the orientation of the outer system. There are a lot of theory for this device,
but it is not our concern now.

Fig 6: A gyroscope (Wikipedia)

The Gyroscope has a long history and nowadays they are used in many
application of modern life, so to fit with a wide range of application like that,
there also a wide range of gyroscope.

The most precise gyroscope is the navigation grade gyroscope, which is used
in the ship INS, its has the precision of about 1.6 km drifting a day.

Next is the tactical grade, is used in the fighter plane or self driving car.
And there are 3 rank upper until the commercial rank, with is our MPU-6050.

The commercial grade Gyroscope will return the angle velocity of the system
instead of the absolute angle, this is because the MEMS technology behind this
device. We can see that the raw data from low-cost commercial IMU always
has the bias and always suffer from strong white Gaussian noise.

To calibrate the sensor, we should get the measurement of the sensor when
its is non moving, by that we can measure the bias bω and the covariance σ on
3 axes of the sensor.

We already know about how to compute the orientation with the angle
velocity by integral the sensor value: Euler:

θ = θ + (ω − bω) ∗∆t

Quaternion:

q′ =
1

2
∗ q ∗ (ω − bω)

19

Fig 7: A gyroscope raw data, get from MPU-6050

This orientation is relative to a reference point, this is not the absolute orienta-
tion, so orientation data get from gyroscope always tend to be ”drift”.

Fig 8: Gyroscope integral drifting, get from MPU-6050

As we discuss previously, the raw data has no drifting, the integration of
sensor data makes the orientation data ”drift”. Eliminating the ”drift” is im-
possible, even with our best navigation grade gyroscope. That is the reason
gyroscope always goes with an absolute sensor like Accelerometer and Magne-
tometer.

B.2 Accelerometer:

An MEMS accelerometer is like the Gyroscope, the accelerometer suffer from
sensor bias and the white Gaussian noise, but instead of getting the orientation

20

by integral the raw data, the accelerometer using the gravitation force of the
Earth to measure the orientation of the sensor.

Fig 9: Accelerometer data, get from MPU-6050

We can only eliminate the bias but not the white Gaussian noise, that is
why we need the Kalman Filter.

B.3 Magnetometer:

This is the most complex sensor to begin with, because its has two noise source:
The hard iron, which is the magnetic field of the permenent nearby device
(maybe the magnet of the speaker in an mobile phone, an iron casing,..etc

B.4 Earth magnetic field

Fig 10: Earth magnetic field (Wikipedia)

At any location on Earth, the magnetic field can be locally represent by a 3
dimension factor: the magnetic vector (h0). This vector can be decompose into 3
component: The Intensity vector (I) with is horizontally angled, the Declination
angle, this is the angle of the North magnetic ole and North geography pole (D)
and the Inclination vector with pointing up or down (L). Actually when we
using the magnetometer, we have to look at the magnetic intensity map to
know the D value to correct the measurement. [8]

The magnetometer has two noise source: Hard iron and Soft iron:
Hard iron will “slip” the magnetic coordinate by an linear amount, hard iron

can be resolve by recenter the distribution of magnetic field to the root of the
inner coordinates system

21

The soft iron: this is the “distortion” of the magnetic field. Normally, the
magnetic field must has an nicely sphere shape which has the center is the root
of coordinate system, but in case of soft iron, the magnetic field become an
elliptic shape.

Fig 11: ”hard iron” and ”soft iron” effect.

Fig 12: Magnetometer data suffered from both hard and soft iron, get from
MPU-9250

The way to calibrate the magnetometer is based on [9] To solve hard iron,
we calculate the offset by the equation for 3 axes:

offsetx =
max(x) +min(x)

2

correctedx = sensor − offset

offsety =
max(y) +min(y)

2

correctedy = sensor − offset

22

Fig 13: Magnetometer data calibrated.

offsetz =
max(z) +min(z)

2
correctedz = sensor − offset

This will turn the coordinates system to the (0,0,0) root.
To solve the soft iron, we using the following equation to turn the elliptic

into the sphere:

∆x =
max(x)−min(x)

2

∆y =
max(y)−min(y)

2

∆z =
max(z)−min(z)

2

∆ =
∆x + ∆y + ∆z

3

scalex = ∆/∆x

scaley = ∆/∆y

scalez = ∆/∆z

correctedx = (sensorx − offsetx) ∗ scalex
correctedy = (sensory − offsety) ∗ scaley
correctedz = (sensorz − offsetz) ∗ scalez

This is the simple way to calibrate the magnetometer, the hard (and maybe
better) way is using the elliptic equation fitting of the matlab. because the effect
of hard and soft iron, the sensor data is elliptic, by finding the elliptic equation,
we can find a transform equation for the data. This will be cover in the next
version of the document.

23

Fig 14: Magnetometer data after calibration, get from MPU-9250

References

[1] Dan Simon. Optimal State Estimation. John Wiley and Sons, Inc, 2006.

[2] Riki. Attitude determination with quaternion using ekf.

[3] Wikipedia. Quaternion.

[4] Wikipedia. Quaternions and spatial rotation.

[5] Joan Solà. Quaternion kinematics for the error-state kalman filter. CoRR,
abs/1711.02508, 2017.

[6] Wikipedia. Conversion between quaternions and euler angles.

[7] Wikipedia. 3d rotation group.

[8] Testlabs. A way to calibrate a magnetometer.

[9] Mika Tuupola. How to calibrate a magnetometer?

24

